5.3 Geometric Solids

PRISMS

Formed by taking a 2D object and \qquad it to make a 3D solid.

Square Prism

Triangular base Prism

Note: The prism is named after the shape of the \qquad not the \qquad
Properties of Prisms:

- has \qquad that are parallel and congruent
- the \qquad are perpendicular to the \qquad
- the \qquad is the length of one of the \qquad

PYRAMIDS

The Pyramid is named after the shape of \qquad

Properties of Pyramids

- a \qquad makes the base
- the Lateral Faces are \qquad
- the height of each lateral face is called the \qquad
- a pyramid is right when the height from the \qquad touches the base at 90°

CYLINDERS

Generated by taking a \qquad and dragging it to make a 3D solid; or by rotating a \qquad .

Note: Cylinders can either be \qquad or \qquad .

- two discs with the same radius make the \qquad
- the radius of the base is the radius of the \qquad
- the height is the distance between the \qquad

CONES

Generated by rotating a \qquad around one of its legs.

It is a curved solid that ends at an \qquad .

Properties of Cones

- May or may not have a \qquad
- Curved surface is called \qquad
- The \qquad is on the lateral surface

- The \qquad is the perpendicular distance from apex to base

Note: We can use Pythagorean Theorem to figure out the radius, height or slant height. $s^{2}=h^{2}+r^{2}$

Net of a Cone:

$$
\frac{a}{360^{\circ}}=\frac{m A B}{2 \pi s}
$$

SPHERES

Generated by rotating a \qquad around its diameter. All points on its surface are equidistant from the centre.

Properties of Sphere

- any segment joining the centre of the sphere to the surface is called the \qquad .
- Any segment that connects 2 points on the surface of the sphere AND goes through the centre is the \qquad .

